Estimation of mangrove canopy chlorophyll content using hyperspectral image and stacking ensemble regression algorithm
نویسندگان
چکیده
çº¢æ ææ¯ä¸çä¸ç产åæé«ã价弿é«ç湿å°çæç³»ç»ä¹ä¸ãå å±å¶ç»¿ç´ å«éCCCï¼Canopy Chlorophyll Contentï¼ä½ä¸ºçº¢æ æéè¦ççç©ç©çåéï¼æ¯ä¼°ç®å ¶ç产ååè¯ä»·å ¶å¥åº·ç¶åµçéè¦ææ ãæ¬æå©ç¨ç æµ·ä¸å·é«å è°±å«æï¼OHSï¼å½±åä¸Sentinel-2Aå¤å è°±æ°æ®è®¡ç®ä¼ ç»æ¤è¢«ææ°ä¸ç»åæ¤è¢«ææ°å¹¶æå»ºäºé«ç»´æ°æ®éï¼ç»¼åå©ç¨æ£æå叿£éªãæå¤§ç¸å ³ç³»æ°æ³ä¸åééè¦æ§è¯ä»·è¿è¡æ°æ®éç»´ååéä¼éï¼åå«åºäºåä¸çº¿æ§åå½ç®æ³ãæºå¨å¦ä¹ åå½ç®æ³åå æ éæå¦ä¹ åå½ç®æ³æå»ºäºçº¢æ æCCCé¥æåæ¼æ¨¡åï¼æ¢æå鍿¹¾çº¢æ æCCCçæä½³é¥æåæ¼æ¨¡åï¼éªè¯OHSé«å 谱影åä¸Sentinel-2Aæ°æ®åæ¼çº¢æ æCCCç精度差å¼ï¼è¯ä¼°SNAP-SL2Pç®æ³åæ¼çº¢æ æCCCçéç¨æ§ãç ç©¶ç»æè¡¨æï¼ï¼1ï¼éè¿æ°æ®éç»´ååééæ©å¤çï¼ä»é«ç»´åº¦OHSæ°æ®ééåäº8个ç¹å¾åéï¼å ¶ä¸RSIï¼12ï¼17ï¼ãDSIï¼12ï¼18ï¼åNDSIï¼6ï¼12ï¼ç»åæ¤è¢«ææ°å¯¹çº¢æ æCCCåæ¼ç²¾åº¦çè´¡ç®çè¾é«ï¼ï¼2ï¼èåOHSæ°æ®åæä¼å GBRTéæå¦ä¹ å彿¨¡åï¼Score=0.999ï¼RMSE=0.963 μg/cm2ï¼çè®ç»ç²¾åº¦ä¼äºæä¼RFæºå¨å¦ä¹ å彿¨¡åï¼RMSEéä½äº7.531 μg/cm2ï¼ï¼ææ¾ä¼äºæä¼Lasso线æ§å彿¨¡åï¼RMSEéä½äº19.383 μg/cm2ï¼ï¼ï¼3ï¼å¨æä¼å å彿¨¡åä¸ï¼OHSæ°æ®åæ¼çº¢æ æCCCç精度ï¼R2=0.761ï¼RMSE=16.738 μg/cm2ï¼é«äºSentinel-2Aå½±åï¼R2=0.615ï¼RMSE=20.701 μg/cm2ï¼ï¼ï¼4ï¼èåOHSåSentinel-2Aæ°æ®çæä¼å å彿¨¡ååæ¼çº¢æ æCCCçç²¾åº¦é½ææ¾ä¼äºSNAP-SL2Pç®æ³ï¼R2=0.356ï¼RMSE=49.419 μg/cm2ï¼ãç ç©¶ç»æè®ºè¯äºæ£æå叿£éªãæå¤§ç¸å ³ç³»æ°æ³ååºäºXGBoostçç¹å¾éæ©æ¹æ³ææéä½äºé«ç»´æ°æ®éç维度ï¼å¹¶å¾å°äºæä¼ç¹å¾åéï¼OHSæ°æ®çæä¼å å彿¨¡åè®ç»ç²¾åº¦æé«ï¼æ¯ä¼°ç®çº¢æ æCCCçæä¼åæ¼æ¨¡åï¼OHSåSentinel-2Aæ°æ®é½è½ææåæ¼çº¢æ æCCCï¼R2å大äº0.61ï¼ï¼èOHSæ°æ®çä¼°ç®ç²¾åº¦æ´é«ï¼R2大äº0.75ï¼ï¼SNAP-SL2Pç®æ³ä¸è½ææåæ¼çº¢æ æCCCï¼R2å°äº0.4ï¼ï¼ä¸å¯¹çº¢æ æCCCæ°å¼åå¨ç³»ç»æ§ä½ä¼°ã
منابع مشابه
Remote estimation of canopy chlorophyll content in crops
[1] Accurate estimation of spatially distributed chlorophyll content (Chl) in crops is of great importance for regional and global studies of carbon balance and responses to fertilizer (e.g., nitrogen) application. In this paper a recently developed conceptual model was applied for remotely estimating Chl in maize and soybean canopies. We tuned the spectral regions to be included in the model, ...
متن کاملRetrieval of coniferous canopy chlorophyll content from high spatial resolution hyperspectral data
The discrete Anisotropic Radiative Transfer (DART) model, coupled with an adjusted version of the PROSPECT model, was used to retrieve total chlorophyll content (Cab) of a complex Norway spruce (Picea abies (L.) Karst.) canopy from airborne hyperspectral data acquired at very high spatial resolution. The radiative transfer models were parameterized by using field measurements and observations c...
متن کاملHyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops
An investigation of the estimation of leaf biochemistry in open tree crop canopies using high-spatial hyperspectral remote sensing imagery is presented. Hyperspectral optical indices related to leaf chlorophyll content were used to test different radiative transfer modelling assumptions in open canopies where crown, soil and shadow components were separately targeted using 1 m spatial resolutio...
متن کاملA hyperspectral index sensitive to subtle changes in the canopy chlorophyll content under arsenic stress
Arsenic stress induces in subtle changes in the canopy chlorophyll content (CCC). Therefore, the establishment of a spectral index that is sensitive to subtle changes in the CCC is important for monitoring crop arsenic contamination in large areas by remote sensing. Experimental sites with three contamination levels were selected and were located in Chang Chun City, Jilin City, Jilin Province, ...
متن کاملEstimating canopy water content using hyperspectral remote sensing data
Hyperspectral remote sensing has demonstrated great potential for accurate retrieval of canopy water content (CWC). This CWC is defined by the product of the leaf equivalent water thickness (EWT) and the leaf area index (LAI). In this paper, in particular the spectral information provided by the canopy water absorption feature at 970 nm for estimating and predicting CWC was studied using a mode...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of remote sensing
سال: 2022
ISSN: ['1007-4619', '2095-9494']
DOI: https://doi.org/10.11834/jrs.20211374